

Impacts of Brominated Flame Retardants on the Recycling of WEEE plastics.

Online launch event | 18th November 2020

Arthur Haarman | Federico Magalini | Joséphine Courtois

Context

Waste electrical and electronic equipment (**WEEE**): **11 million tons** in 2020 in EU

25% is plastic:

- many different **polymers** (ABS, PS, PP, etc.)
- wide range of additives (flame retardants, fillers, plasticizers, pigments, etc.)

Recycling of WEEE plastics could contribute to **Circular Plastics Alliance's** target: 10 million tons of recycled plastics by 2025

A large fraction of the total WEEE plastics potential does not reach European recyclers: sub-standard WEEE collection/treatment

Technical, economic and regulatory challenges negatively impact recycling yields (50-60%)

- Technological difficulties in sorting
- Strict quality requirements for recyclates
- Lack of market and/or inability to compete with virgin polymers
- Presence of "legacy additives"

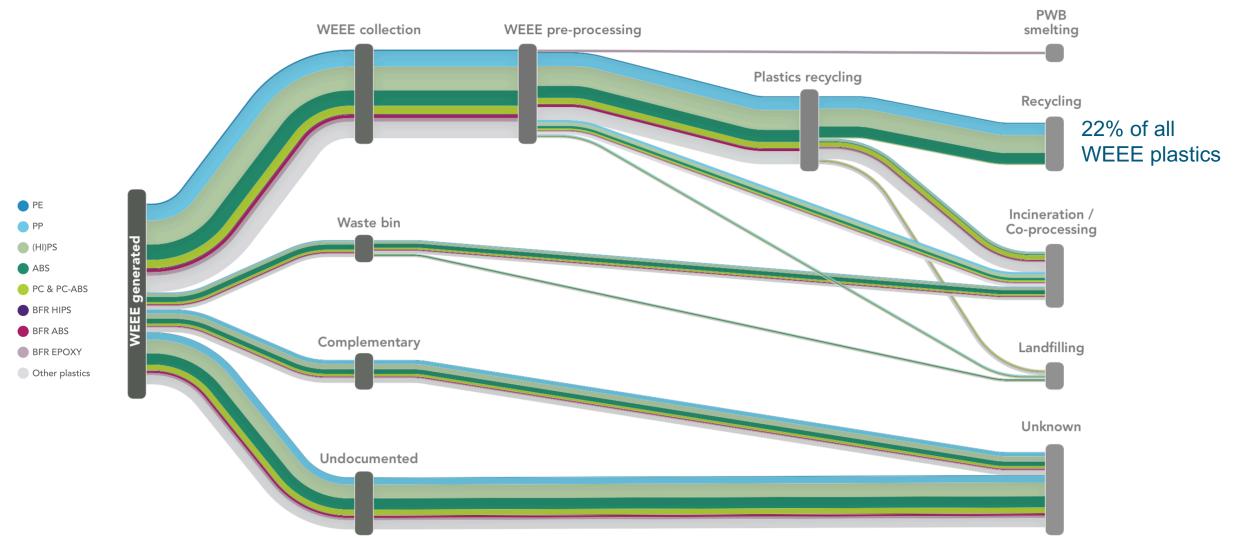
Objectives

Estimate the volumes and fate of BFRcontaining plastics arising in WEEE in Europe Get a picture of the trend in levels of legacy BFRs in WEEE plastics Review BFR plastics treatment requirements and practices Understand impact of BFRs on recycling

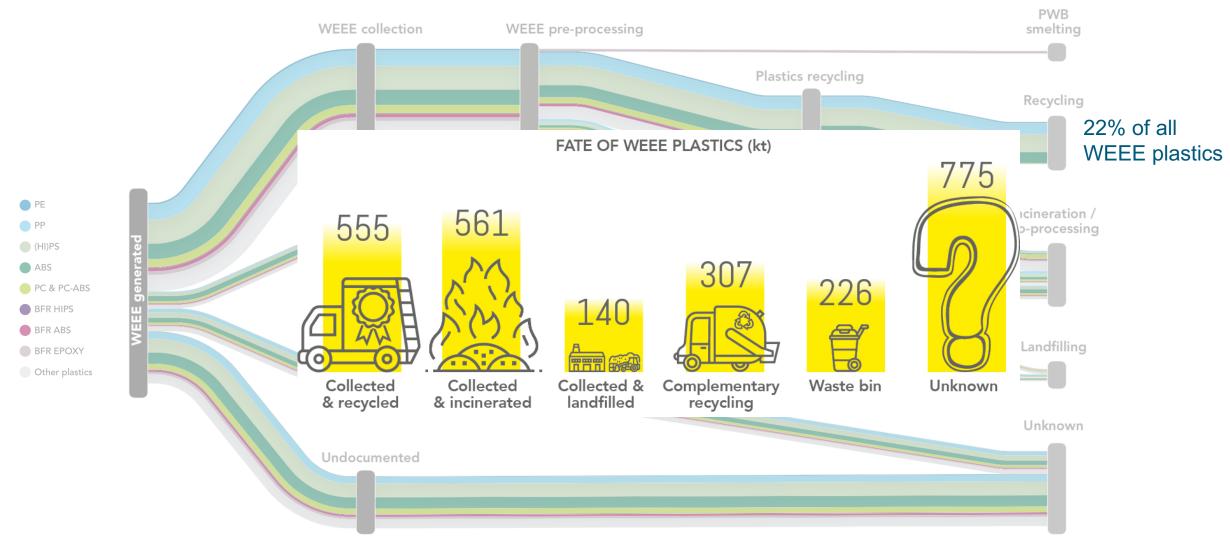
Assess the impact caused by the presence of BFRs on the recycling of WEEE plastics

Understand impact of BFRs on recycling yields and recyclates quality, and compare with alternative FRs

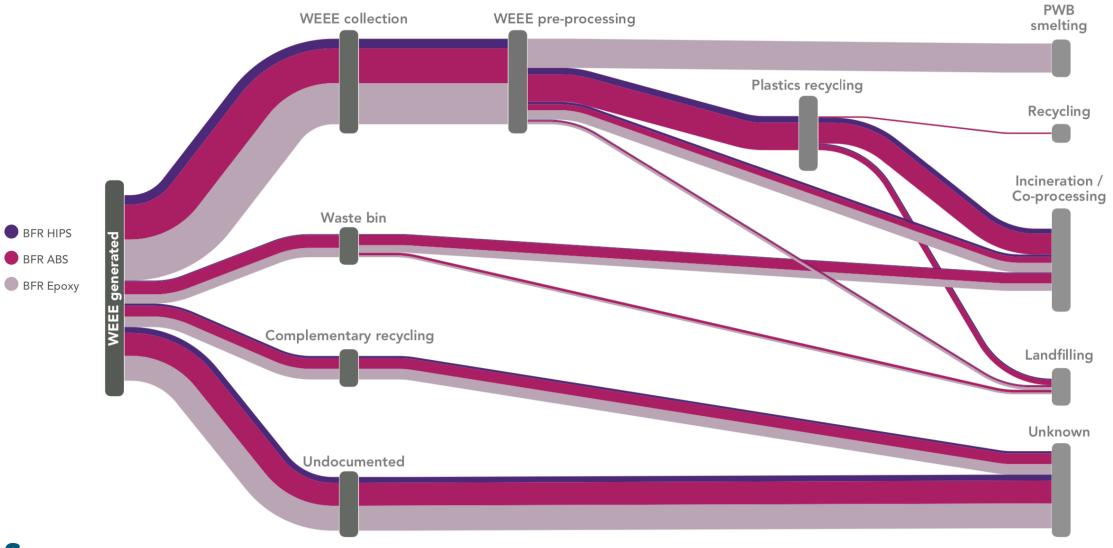
Method:


- Collection of data on WEEE plastics composition (>800 data points, from published studies as well as data provided by WEEE recyclers, WEEE plastic recyclers and take-back schemes)
- Mass flow model based on updated ProSUM data, other studies and information provided by various stakeholders

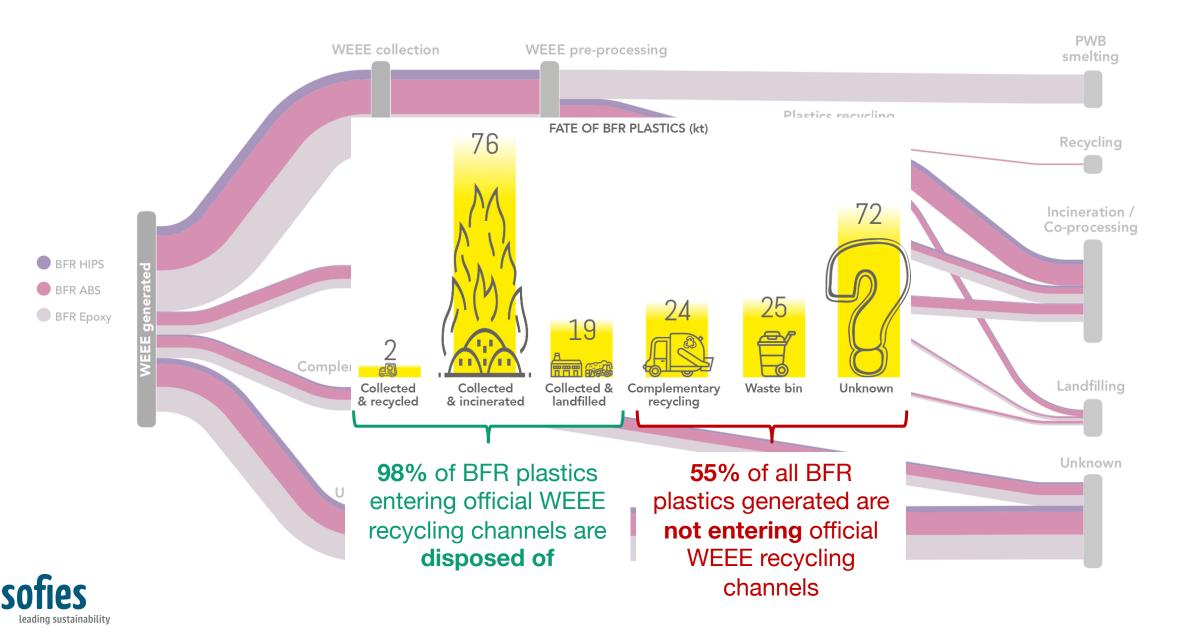
Estimate the **volumes and fate of BFRcontaining plastics** arising in WEEE in Europe

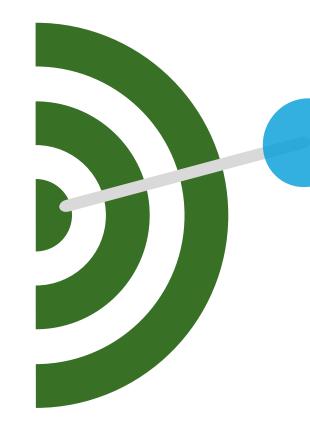


WEEE plastics mass flows (EU28+2, 2020)



WEEE plastics mass flows (EU28+2, 2020)




BFR plastics mass flows (EU28+2, 2020)

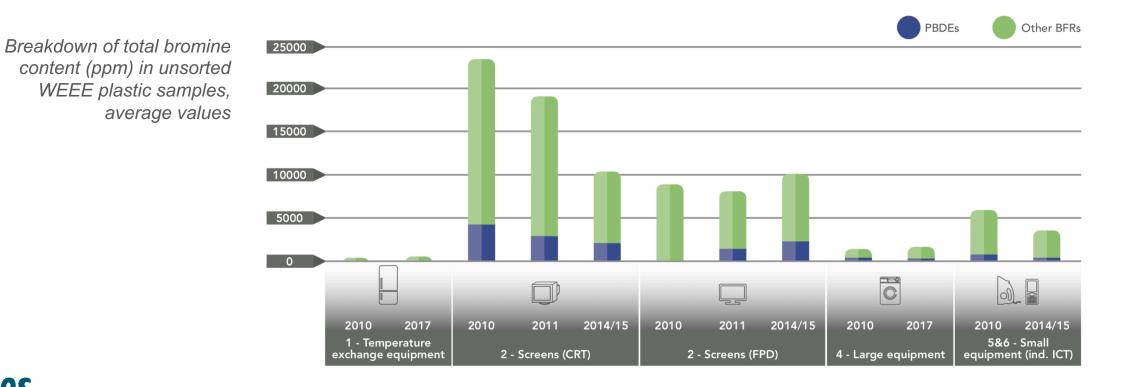
Sofies Leading sustainability

BFR plastics mass flows (EU28+2, 2020)

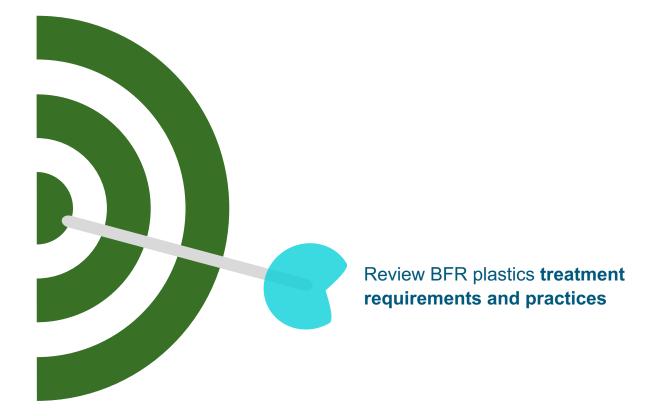
Get a picture of the **trend in levels of legacy BFRs** in WEEE plastics

Method:

- Collection of data on BFRs levels in WEEE plastics (>400 data points, from published studies)
- Selection of data corresponding to representative samples of unsorted WEEE plastic mixtures


Data on BFR levels

	Sampling year		Br		ΣPBBs		нвср		Penta+OctaBDE		DecaBDE		ΣPBDEs		тввра		%PBDEs	%тввра	
Category		# samples	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	in total Br in total E		Reference
	2010	12	245	210	BDL	BDL	BDL	BDL	BDL	BDL	92	BDL	92	BDL	5	BDL	31%	1%	Wäger et al. 2011
1 – Temp. exch. equipement	2017	30		BDL					BDL	BDL	BDL	BDL	BDL						Drage et al. 2018
	2017	15	353	293	BDL	BDL	BDL	BDL	3	BDL	49	25	103	81	102	14	12%	17%	Haarman et al. 2018
2 – Screens	2017	43		320					38	BDL	1900	BDL	1938		-				Drage et al. 2018
2 - Screens (CRT)	2010	14	23571	15500	104	85	357	BDL	1486	665	3700	3450	5186	3995	16964	2975	18%	42%	Wäger et al. 2011
	2011	6	19167	19000	BDL	BDL	42	BDL	974	839	2600	2400	3574	3457	7553	6970	15%	23%	Taverna et al. 2017
	2014-2015	8	10394		34	34	552	276	574		1933		2507		3335		20%	19%	Hennebert et al. 2018
2 - Screens (FPD)	2010	6	8950	7900	BDL	BDL	BDL	BDL	32	BDL	67	BDL	98	BDL	1253	805	1%	8%	Wäger et al. 2011
	2011	6	8117	8150	BDL	BDL	BDL	BDL	11	12	1700	1500	1711	1511	2705	2375	17%	20%	Taverna et al. 2017
	2014-2015	8	10014		BDL	BDL	15	8	18		2708	-	2725		2100	1050	23%	12%	Hennebert et al. 2018
4 - Large equipment	2010	6	1083	1135	BDL	BDL	BDL	BDL	BDL	BDL	450	150	450	150	18	BDL	34%	1%	Wäger et al. 2011
	2017	57		0					BDL	BDL	19	BDL	19						Drage et al. 2018
	2017	21	1541	1300	BDL	BDL	8	BDL	17	BDL	147	48	201	170	222	52	9%	9%	Haarman et al. 2018
5 - Small equipment	2010	14	3258	1450	9	BDL	BDL	BDL	71	BDL	343	300	414	300	719	275	10%	13%	Wäger et al. 2011
	2017	29		1					BDL	BDL	170	BDL	170						Drage et al. 2018
6 - Small ICT	2010	6	11767	13000	8	BDL	BDL	BDL	450	295	883	700	1333	1575	3485	3675	9%	17%	Wäger et al. 2011
	2017	78		18					17	BDL	260	BDL	277						Drage et al. 2018
5&6 – Small equipement incl. ICT	2014-2015	8	3503		BDL	BDL	157	79	72		378		450		843	422	11%	14%	Hennebert et al. 2018


BFR levels over time

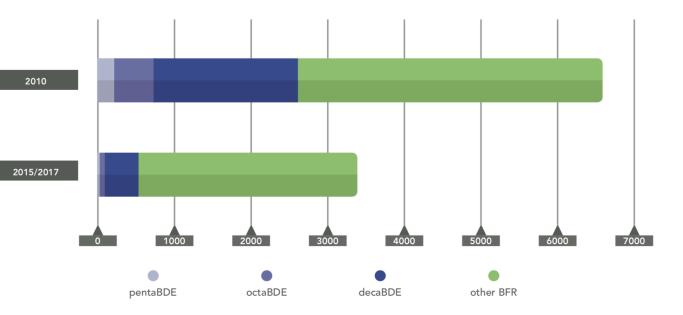
- Data collected from 5 studies, total of 367 samples
- Highest BFR levels in screens (esp. CRT), followed by small equipment
- Small and declining share of PBDEs in total Br content

Data sources: Wäger 2010;Taverna 2017;Drage 2018;Haarman 2018;Hennebert 2018

leading sustainability

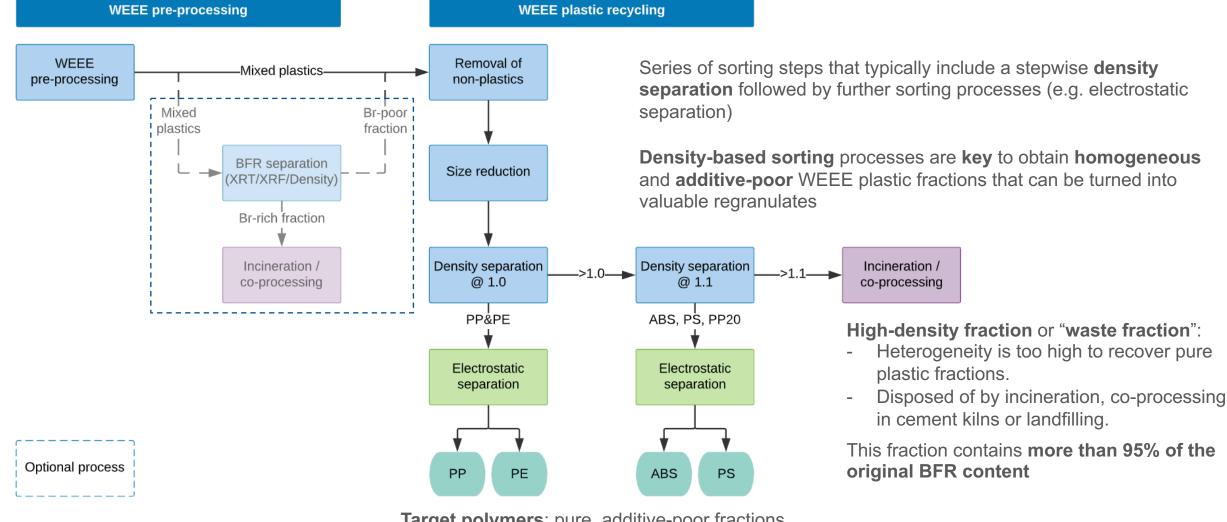
Method:

- Review of normative requirements
- > Interviews with take-back schemes & recyclers



BFR plastics treatment requirements

- WEEE Directive: segregation of plastics containing restricted BFRs
- CEN standard:
 - Separate **Br-poor** fraction (to recycle) and **Br-rich** fraction (to dispose) for plastics from screens and small appliances
 - Threshold of 2,000 ppm Br


In 2010, 40% restricted BFRs of total Br content. 2,000 ppm Br threshold corresponded to a level below which **exceedance of the limit values for restricted BFRs was statistically unlikely**.

Nowadays, 15% restricted BFRs of total Br content. **Following the same logic**, threshold could be set at **6,000 ppm** (considering currently applicable limit values)

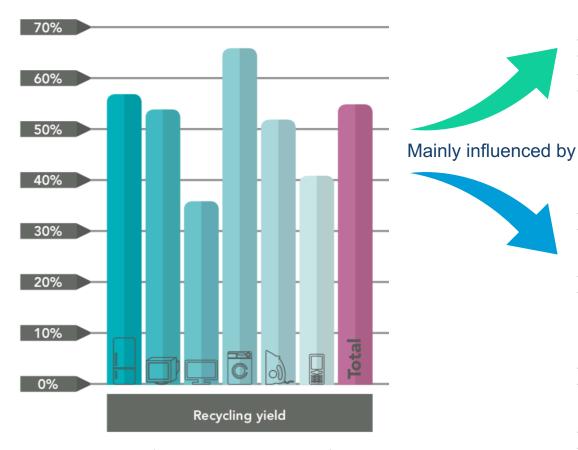
WEEE plastics recycling process

leading sustainability

Target polymers: pure, additive-poor fractions turned into recycled plastics for the manufacture of new products

Method:

> Interviews with recyclers


Review of available literature

Understand impact of BFRs on recycling **yields** and recyclates **quality**, and compare with **alternative FRs**

Impacts on recycling yields

(recycled plastics output / input to plastic recycling process)

leading sustainability

Share of target polymers

- Mainly PP, PE, ABS, PS (PC-ABS)
- Can be easily separated through density sorting

Additive loadings

- Plastics containing high loads of additives (fillers, flame retardants, stabilizers, etc.) are not suitable for recycling
- Removal of plastics with high loads of additives (through density sorting) therefore inherent to WEEE plastics recycling, regardless of BFR content
- Switch to alternative FRs would not improve yields, as PFRs and mineral FRs are also sorted out in recycling process
- Some alternative FRs could even worsen recycling yields, e.g. blend of PPE/PS polymer with RDP (PFR), which is listed in CoRAP list of substances but cannot be sorted out through density sorting ("regrettable substitution")

Impacts on recyclates quality

"degree to which a set of inherent characteristics of an object fulfils requirements" WEEE plastics: mechanical, rheological and aesthetics properties

Purity

- Most plastics are immiscible, i.e. they will not form a single phase when melted
- Depends on polymers, e.g. HIPS can tolerate as much as 5% of ABS impurity but only 1% of PC or PC-ABS

Content in additives

- Additives may adversely affect the quality of recyclates (e.g. stiffness, brittleness, thermal stability, shrinkage, impact strength)
- Several studies compared impacts of FRs on recyclates quality*
- BFRs found to have remarkably few negative effects
- In contrast, organophosphates (PFRs) are known to negatively impact quality of recyclates (e.g. degrade into acid compounds causing brittleness of recyclates)
- Little research on impacts of mineral FRs, however considering the high functional loadings (>60%) brittleness is likely

Key findings & Recommendations

Key findings

~2.6 Mt of WEEE plastics generated annually in Europe, 9% contain BFR Restricted BFRs represent small and declining fraction of all BFRs. 2,000 ppm Br sorting threshold should be reviewed considering decline in levels of restricted BFRs High-density fraction, containing dense polymers + BFRs, PFRs, mineral FRs and other additives, cannot be recycled and is **disposed of**

Only ~1 Mt of WEEE plastics reach
specialized recycling facilities, mainly due to low WEEE collection rates.
Average recycling yield of 55% → 550 kt
PCR WEEE plastic produced annually (22% of total potential)

State-of-the-art WEEE plastic recycling processes rely on **density sorting** to recover marketable homogeneous and additive-free recyclates (mainly PP, ABS, PS). Able to **remove >95% of Br** content. Switch to alternative FRs would not improve WEEE plastics recycling, and could even lead to detrimental impacts on yields and quality ("regrettable substitution")

Recommendations

Policymakers

Increase quantities of WEEE plastics reaching recycling facilities by increasing **WEEE collection rates**, enforcing **compliance with EN 50625**, and facilitating **intra-EU crossborder shipments** towards state-of-the-art WEEE plastic recycling facilities

Investigate the **impacts of alternative FRs** on the recyclability of WEEE plastics to avoid "regrettable substitution" effects

Improve the **knowledge base** necessary for evidence-based policies and decisions by regularly collecting and analysing representative data on levels of BFRs and other additives in WEEE plastic streams

Review the **relevance of normative requirements** on treatment of BFR-containing WEEE plastics considering the reduction of restricted BFR levels over time (e.g. increase 2,000 ppm sorting threshold)

Harmonize and ensure stability of legislation of chemical, waste and products having a direct impact on WEEE plastic recycling, to facilitate **investment** in innovative recycling technologies

Recommendations

Producers

Adopt and implement recycled content targets to boost demand for WEEE plastic recyclates and decouple from virgin plastic prices

Exchange with WEEE plastics recyclers to understand how the **choice of polymers and additives** influence the recyclability of plastics, and select polymers (and additives) used in the manufacture of EEE considering the extent to which they are currently recycled

Recyclers

Develop **innovative** sorting and recycling methods to **recover a higher share** of plastics, enabling for instance the recovery of PC-ABS, PA, or PBT polymers.

Seek long-lasting partnerships with producers to optimize design for and from recycling

Thank you for your attention!

Study on the Impacts of Brominated Flame Retardants on the Recycling of WEEE plastics in Europe.

